CUSTOMER SEGMENTATION FOR ONLINE RETAIL

CAPSTONE PROJECT BY DEA WANG

PROJECT OUTLINE

Sector: Retail (E-commerce/Online Retail)

Objective: Find the most profitable customer segment to target for marketing campaign/increase revenue

Python Libraries:

numpy, pandas, datetime, os, exchangerateapi matplotlib, seaborn, mpl_toolkits, wordcloud sklearn: StandardScaler, KMeans, KElbowVisualizer

		Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Country
	0	489434	85048	15CM CHRISTMAS GLASS BALL 20 LIGHTS	12	2009-12-01 07:45:00	6.95	13085.0	United Kingdom
	1	489434	79323P	PINK CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom
	2	489434	79323W	WHITE CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom
525	459	538171	20970	PINK FLORAL FELTCRAFT SHOULDER BAG	2	2010-12-09 20:01:00	3.75	17530.0	United Kingdom
525	460	538171	21931	JUMBO STORAGE BAG SUKI	2	2010-12-09 20:01:00	1.95	17530.0	United Kingdom

ONLINE RETAIL II DATESET FROM UCI ML REPO

HTTPS://ARCHIVE.ICS.UCI.EDU/ML/DATASETS/ONLINE+RETAIL+

- 525,461 Invoice Listings
- 8 Features
- From 2009-12-01 to 2010-12-09
- File size = 25 MB

DATA CLEANING

- Fill or drop Null values where applicable
- Remove **Duplicate** values
- Remove Erroneous data: negative or zero values in Quantity and Price
- Convert **Price** from GBP in CAD

PRODUCT DESCRIPTION

- Common Products
- Description Word Cloud

Avg_Purchase_Value Avg_Pr	urchase_Frequency_Rate	Customer_Value	Customer_Lifespan	Customer_Lifetime_Value
---------------------------	------------------------	----------------	-------------------	-------------------------

\bigotimes	\mathbf{X}			
637.65	1	637.65	33	19.322727
2262.86	1	2262.86	71	31.871268
379.85	1	379.85	20	18.992500
4567.63	1	4567.63	102	44.780686
514.55	1	514.55	21	24.502381
1058.92	1	1058.92	217	4.879816
789.47	1	789.47	28	28.195357
730.18	1	730.18	12	60.848333
2216.91	1	2216.91	67	33.088209
4011.19	1	4011.19	85	47.190471

ANALYZING CUSTOMER VALUE

Earliest Invoice Date – First Purchase Date

- Number of days since a customer made the last purchase
- Or last visit day or the last login time
- Lower the better

Number of Invoices grouped by Customer ID

- The number of purchases made in a given period
- How often a customer use our products/services
- Higher the better

Unit Price * Quantity grouped by Customer ID

- Total amount of money a customer spent in a given period
- Useful for recognizing opportunities to upsell
- Higher the better

Recency Frequency MonetaryValue

Customer ID

12346.0	165	33	637.65
12347.0	3	71	2262.86
12348.0	74	20	379.85
12349.0	43	102	4567.63
12351.0	11	21	514.55
18283.0	18	217	1058.92
18284.0	67	28	789.47
18285.0	296	12	730.18
18286.0	112	67	2216.91
18287.0	18	85	4011.19

	Recency	Frequency	MonetaryValue	R	F	М	RFM_Segment	RFM_Score
Customer ID								
12415.0	11	212	33419.88	4	4	8	448	16
12431.0	9	170	7473.63	4	4	8	448	16
12433.0	2	286	12321.24	4	4	8	448	16
12471.0	10	677	34421.38	4	4	8	448	16
12472.0	5	572	19337.58	4	4	8	448	16

CUSTOMER SEGMENTATION BY COHORTS

- RFM Score: 3 to 16 (14 Segments Scores)
- RFM Segment Categories: 4x4x8 (128 Unique Categorical Segments)

	Recency	Frequency	MonetaryValue	
	mean	mean	mean	count
RFM_Score				
3	252.0	6.0	179.0	243
4	196.0	13.0	305.0	291
5	160.0	16.0	404.0	308
6	134.0	21.0	509.0	322
7	112.0	27.0	698.0	336
8	87.0	33.0	876.0	333
9	78.0	40.0	1161.0	324
10	79.0	56.0	1803.0	343
11	59.0	71.0	2170.0	343
12	49.0	91.0	2928.0	299
13	40.0	123.0	3733.0	317
14	31.0	173.0	5390.0	305
15	17.0	230.0	8039.0	286
16	8.0	465.0	24080.0	264

Score_Segments	Recency	Frequency	MonetaryValue		
	mean	mean	mean	count	
Gold	25.0	239.0	9798.0	1172	
Silver	63.0	72.0	2272.0	985	
Bronze	93.0	33.0	909.0	993	
Copper	181.0	15.0	361.0	1164	

HEURISTIC APPROACH

• 4 Segments of similar size defined by having similar characteristics

KMEANS ASSUMPTIONS

- Distribution of each variable is spherical (SSE is the right objective to minimize)
- All variables have the same mean (SSE)
- All variables have the same variance (variables are of equal importance)

LOGARITHMIC TRANSFORMATION

STANDARDIZING

- Applied Standard Scalar
- Standardize to the same mean
- Scale to the same standard deviation

DETERMINING BEST K VALUE

from yellowbrick.cluster import KElbowVisualizer

SILHOUETTE METHOD

ELBOW METHOD

HEURISTIC GROUPING VS KMEANS

						Recency	Frequency	Monetary	Value
Score_Segments	Recency	Frequency	Moneta	ryValue		mean	mean	mean	count
	mean	mean	mean	count	K_Cluster				
Gold	25.0	239.0	9798.0	1172	3 (Gold)	14.0	274.0	11366.0	891
Silver	63.0	72.0	2272.0	985	1 (Spend More & Often)	103.0	82.0	2663.0	1288
Bronze	93.0	33.0	909.0	993	0 (More Recent)	23.0	38.0	1012.0	913
Copper	181.0	15.0	361.0	1164	2 (Copper)	186.0	15.0	462.0	1220

LINION	AIL - 30.3/0
True	0.696892
False	0.303108
	· •·

EDDOD DATE - 20 2%

Segment Attributes

GOLDEN GOOSE

- 20.5% of customers (891 customers)
- Spends on average \$11,000 CAD per year
- Repurchases 2 weeks after
 First Purchase
- Makes 270 orders per year

RECENT REVISITOR

- 21.2% of customers (913)
- Spends on average \$1,000 CAD
- Repurchases 3 weeks after
 First Purchase
- Makes on average 38 orders

WHO ARE OUR CUSTOMERS? & WHERE DO OUR OPPORTUNITIES LIE?

LOYAL LEGION

- 30% of customers (1288 customers)
- Spends on average \$2,600 CAD per year
 - Repurchases 3 months after
 First Purchase
 - Makes 80 orders per year

SLOW SPENDER

- 28.3% of customers (1220)
- Spends on average \$460 CAD
- Purchases again over 6 months later
 - Makes on average 15 orders

3D K-CLUSTERS VISUALIZATION

QUESTIONS, SUGGESTIONS, & RETROSPECTION

THANK YOU TO ROGELIO AND SONIA FOR THE WONDERFUL LESSONS 🤎

- Limitations of K-Means
- Alternatives to K-Means
- Business Impact
- Additional Dataset Combine multi-year data to follow entire Customer Lifespan
 - Combine with Customer Table to segment further by customer demographics